Package: mtarm 0.1.2

mtarm: Bayesian Estimation of Multivariate Threshold Autoregressive Models

Estimation, inference and forecasting using the Bayesian approach for multivariate threshold autoregressive (TAR) models in which the distribution used to describe the noise process belongs to the class of Gaussian variance mixtures.

Authors:Luis Hernando Vanegas [aut, cre], Sergio Alejandro Calderón [aut], Luz Marina Rondón [aut]

mtarm_0.1.2.tar.gz
mtarm_0.1.2.zip(r-4.5)mtarm_0.1.2.zip(r-4.4)mtarm_0.1.2.zip(r-4.3)
mtarm_0.1.2.tgz(r-4.4-any)mtarm_0.1.2.tgz(r-4.3-any)
mtarm_0.1.2.tar.gz(r-4.5-noble)mtarm_0.1.2.tar.gz(r-4.4-noble)
mtarm_0.1.2.tgz(r-4.4-emscripten)mtarm_0.1.2.tgz(r-4.3-emscripten)
mtarm.pdf |mtarm.html
mtarm/json (API)

# Install 'mtarm' in R:
install.packages('mtarm', repos = c('https://lhvanegasp.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/lhvanegasp/mtar/issues

Datasets:
  • returns - Returns of the closing prices of three financial indexes
  • riverflows - Rainfall and two river flows in Colombia

On CRAN:

1.48 score 1 scripts 214 downloads 6 exports 4 dependencies

Last updated 4 months agofrom:8d47074824. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:convertDICforecastingmtarsimtarWAIC

Dependencies:codaFormulaGIGrvglattice