Package: mtarm 0.1.2

mtarm: Bayesian Estimation of Multivariate Threshold Autoregressive Models

Estimation, inference and forecasting using the Bayesian approach for multivariate threshold autoregressive (TAR) models in which the distribution used to describe the noise process belongs to the class of Gaussian variance mixtures.

Authors:Luis Hernando Vanegas [aut, cre], Sergio Alejandro Calderón [aut], Luz Marina Rondón [aut]

mtarm_0.1.2.tar.gz
mtarm_0.1.2.zip(r-4.5)mtarm_0.1.2.zip(r-4.4)mtarm_0.1.2.zip(r-4.3)
mtarm_0.1.2.tgz(r-4.5-any)mtarm_0.1.2.tgz(r-4.4-any)mtarm_0.1.2.tgz(r-4.3-any)
mtarm_0.1.2.tar.gz(r-4.5-noble)mtarm_0.1.2.tar.gz(r-4.4-noble)
mtarm_0.1.2.tgz(r-4.4-emscripten)mtarm_0.1.2.tgz(r-4.3-emscripten)
mtarm.pdf |mtarm.html
mtarm/json (API)

# Install 'mtarm' in R:
install.packages('mtarm', repos = c('https://lhvanegasp.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/lhvanegasp/mtar/issues

Datasets:
  • returns - Returns of the closing prices of three financial indexes
  • riverflows - Rainfall and two river flows in Colombia

On CRAN:

Conda:

1.48 score 1 scripts 198 downloads 6 exports 4 dependencies

Last updated 8 months agofrom:8d47074824. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-winOKMar 25 2025
R-4.5-macOKMar 25 2025
R-4.5-linuxOKMar 25 2025
R-4.4-winOKMar 25 2025
R-4.4-macOKMar 25 2025
R-4.4-linuxOKMar 25 2025
R-4.3-winOKMar 25 2025
R-4.3-macOKMar 25 2025

Exports:convertDICforecastingmtarsimtarWAIC

Dependencies:codaFormulaGIGrvglattice